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Unsteady multicellular viscous vortices 

By P. G. BELLAMY-KNIGHTS 
Department of the Mechanics of Fluids, University of Manchester 

(Received 27 April 1971) 

The problem of a viscous vortex core embedded in an unsteady outer potential 
swirling flow is considered. By introducing a suitable similarity variable, the 
full Navier-Stokes equations for the unsteady axisymmetric flow of an incom- 
pressible fluid are reduced to two ordinary differential equations. These are 
solved numerically. When the radial flux of a particular outer potential flow 
satisfies certain conditions a family of three-cell core structures is possible. 
This family is not represented by any known analytical solution. 

This work is useful for studying meteorological flow systems such as tornadoes. 
I n  particular, it  suggests how two- and three-cell structures can develop from a 
one-cell structure and also shows the sensitivity of the core flow to small changes 
in the outer potential flow. 

1. Introduction 
In  an earlier paper (Bellamy-Knights (1970), t o  be referred to hereafter as I) 

a theoretical study of a special case of the unsteady axisymmetric swirling flow 
of a viscous incompressible fluid was made, in which analytic solutions were 
possible. One object of that work was to analyze the effect of radial outflow or 
inflow on the decay of circumferential velocity in the core of a viscous vortex. 
For the special case considered the flow was bounded by a plane, z = 0, per- 
pendicular to the axis of symmetry and, with increasing radius, tended asymp- 
totically to a potential flow solution for which the circulation was constant. It 
was also assumed that the radial and tangential velocity components were 
independent of axial distance z .  

Such a model has been found useful for considering meteorological phenomena 
such as tornadoes (Morton 1966). The general physical validity and limitations 
of such a model were discussed in I. For example, these solutions allow neither 
lateral spreading of the vortex core with increasing height nor a free stagnation 
point. Also, boundary-layer effects over the plane boundary are neglected and 
certain boundary conditions are rarely, if ever, approximated in reality. These 
solutions are, however, useful for considering the core flow in an axial region for 
which the boundary-layer effects of the ground, z = 0, and the lateral core ex- 
pansion can be neglected. 

One- and two-cell analytical solutions of this category, which satisfied the 
full Navier-Stokes equations, were obtained and described in I. (The boundary 
of a cell is defined as a cylinder on which the radial velocity is zero.) Outside the 
vortex core both the one- and two-cell solutions had the same asymptotic 
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2 P . G . Be1 lam y -Knights 

behaviour as the potential flow solution for which the axialvelocity is independent 
of radius and the circulation is constant. This suggested that there might be 
other solutions with different core structures, asymptoting to the same potential 
flow solution as these two analytical solutions. No other analytical solutions were 
discovered so the investigation was extended numerically. The results are 
reported in this paper. 

Cylindrical polar co-ordinates r ,  0, x are used and u, v and w refer to the radial, 
tangential, and axial velocity components respectively. Time, density, pressure 
and kinematic viscosity are denoted by t, p, p and v respectively. 

In  I a particular class of exact solutions of the Navier-Stokes equations was 
considered. These flows were characterized by velocity components of the type 

u = U(T,  t ) ,  v = v(r ,  t ) ,  w = zW(r, t ) .  (1.1) 

Then the axial momentum equation could be written in the form 

where g(r,t) = ru. (1.3) 

Under certain restrictions on the form of 8p/az (see (1.13) below), Bimilarity solu 
tions of (1.2) can be obtained in terms of the similarity variable 

q = r2/4ut. (1-4) 

g = - 2 v f ( r ) ,  (1.5) 

First, it is convenient to non-dimensionalize the dependent variable g by putting 

where the minus sign is introduced so that there is radial inflow whenfis positive. 
Then (1.2) reduces to 

[Tf" + ~ f y  +flit - f t 2  = (t2/pz) aplaz, (1.6) 

where primes denote differentiation with respect to 7. 
The radial velocity component is zero on the axis of symmetry so 

f(0) = 0. (1.7) 

The solution is required to asymptote to an irrotational swirling flow at infinity 
where the velocity components are 

u = - ~ ~ / 2 t ,  v = KJT,  w = yZ/t. (1.8), (1.9), (1.10) 

The parameter y characterizes the scale of the asymptotic velocity field and 
27rKc is the circulation. Thus as -+ m, 

f-. YT+B,  (1.11) 

where B is an arbitrary constant. 
For flows of type (l.l),  differentiating the radial momentum equation with 

respect to z gives 
azp/araz = 0. (1.12) 
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Hence the axial pressure gradient is independent of radius and is therefore de- 
termined by its value in the outer potential flow. This is reminiscent of boundary- 
layer theory for which the pressure is constant through the thickness of the 
boundary layer and therefore determined by the mainstream conditions. In  the 
present rotating flow problem the axial pressure gradient (for a fixed value of 
z and t )  is constant through the vortex core and is therefore determined by the 
outer potential flow. In the outer potential flow the axial pressure gradient is 
obtained by substituting (1.8) to (1.10) into the axial momentum equation. This 
gives 

( t y p )  ap/az = - y(y - 1). (1.13) 
Hence ( 1.6) becomes 

[yf”+yf’]’+ff”-f‘”+(Y- 1)  = 0. (1.14) 

In I, for flows of the type defined by (l.l), the circumferential momentum 
equation reduced to 

(1.15) 

where K = TV. (1.16) 

It is now assumed that K is a function of y only. Then, non-dimensionalizing K ,  

K = K,h(y). (1.17) 

Equation (1.15) then reduces to 

yh” + yh‘ +fh’ = 0. (1.18) 

h(0) = 0. (1.19) 

h-+ 1. (1.20) 

The circumferential velocity component is zero on the axis of symmetry so 

Also, from the outer potential solution, as y --f co, 

The integration of ( 1.14) and ( 1.18) is complicated by the nature of the boundary 
conditions, which include conditions at  both ends of the range. Equation (1.18), 
for h, is linear and poses no problem once f has been determined from (1.14). 
This, however, is nonlinear. The approach used is to replace the outer boundary 
condition on f by a tentative value, A say, off’ on the axis, i.e. 

f’(0) = A,  (1.21) 

and proceed outwards from the axis to determine the numerical solution. 
Equation (1.14) shows that as y 3 0, 

f” -+ -f” - {f” +f’ +ff” - f ’ 2  + y(y - l)>/y. (1.22) 

It follows that iff” is t o  be finite on the axis, as seems physically reasonable, then 

f”(0) = ( A - y ) ( A + y - l ) .  (1.23) 

The three conditions on f, f’ and f ”  on the axis given by (1.7), (1.21) and (1.23) 
1-2 
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enable (1.14) to be solved by marching techniques. This was done for various 
values of A. As might be expected, solutions compatible with the outer boundary 
condition are not obtained for all values of A .  

For two special values of A analytical solutions can be obtained. First, it is 
apparent that when A = y, f”(0) is zero and the solution of (1.14) is 

f = YT. 

Then the solution for h obtained from (1.18) is 

h =  l-exp(-(l+y)T}. 

(1.24) 

(1.25) 

The other analytic solution is obtained when A = - 2y. In this case the solution 
of (1.14) is 

f = YT - [3Y/ ( l+  Y ) l P  - exp { - (1 + Y) 711. (1.26) 

Then (1.18) gives the corresponding solution for h in closed form. 
Provided that 1 +y  > 0 both these solutions will satisfy the outer boundary 

conditions ( 1.11) and (1.20). The first solution corresponds to the one-cell solu- 
tion of Rott (1958) and the second solution is an analytical two-cell solution. 
Both these solutions were considered in detail in I. This paper extends the results 
of I by showing that there are values of A other than A = y and A = - 2y which 
give solutions of (1.14) and (1.18) satisfying the boundary conditions (1.7), (1.1 l), 
(1.19) and (1.20). It will be shown that an infinite number of such solutions is 
possible for each value of y in the range - 1 < y < 4. These solutions are obtained 
when A lies in the range 2y- 2 < A < 1 - y. 

Two particular values of A in this range give the analytical solutions referred 
to above. As A varies over the permitted range of values solutions with various 
core structures are obtained, each tending asymptotically to the same outer 
potential flow solution specified by y. Apart from one- and two-cell structures 
similar to the analytical solutions obtained previously, three-cell structures were 
discovered for a subrange of A .  These three-cell solutions occurred only when y 
was negative, that is, when the outer potential flow was radially outwards. 

2. Numerical integration of equations 
Restricting attention to flows of the type described by (1.1) and assuming 

that the solutions depend only on a similarity variable 7, proportional to r2/t, 
the complete Navier-Stokes equations have been reduced to two ordinary dif- 
ferential equations 

[Tf” + 7f’I’ +ff” -f’2 + y( y - 1) = 0 (2.1) 

and yh”+qh‘+fh‘ = 0, (2.2) 

subject to the boundary conditions 

f(0) = 0, h(0) = 0 

f - + Y T + B ,  h-t  1. 
and, as y -+ CQ, 

The physical problem of solving (2.1), subject to a boundary condition at 
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infinity as well as at the axis, is made more amenable to numerical treatment 
by replacing the outer boundary condition by an additional condition on the 
axis, as described in 3 1. The numerical problem is therefore to  solve (2.1) subject 
to the initial conditions 

f(0) = 0, f ’ (0 )  = A ,  f”(0) = ( A - y )  ( A  + y -  1). (2.7), (2.8), (2.9) 

After obtaining the solution for f it is in principle possible to write the solution 
to (2.2) in closed form, i.e. 

where 

(2.10) 

(2.11) 

In  practice, however, it is simpler to replace boundary condition (2.6) by the 
condition 

and to solve (2.2) by marching techniques simultaneously with (2.1). This results 
in some value for h’(co), say N .  Since (2 .2)  is linear in h, the required solution for h 
satisfying the boundary condition (2.6) can be obtained by dividing the computed 
solution by N ,  provided that N is finite. 

Equations (2.1) and ( 2 . 2 ) ,  subject to boundary conditions (2.7), (2.8), (2.9), 
(2.4) and (2.12), were solved simultaneously on an I.C.T. Atlas computer using 
the Kutta-Merson fourth-order integration method. This is a modification of 
the standard RungeKutta procedure which automatically adjusts the step 
length to obtain a prescribed accuracy. 

The solution is governed by the parameters A and y. If the computed value of 
f’ does not tend to y as 7 -+ co or if N is infinite, then the outer boundary con- 
ditions are not satisfied, so there is no physical solution for these pre-assigned 
values of A and y. For example when y < - 1 it is found that f’ + y only when 
A = y. In  this case, however, N is infinite; alternatively, A = y corresponds to 
the analytical one-cell solution for which it can be seen from (1.25) that h is 
unbounded when y < - 1. 

On the other hand, it is found that the outer boundary conditions are satisfied 
(a )  for two values of A when y > $, (b )  for a limited range of values of A ,  
2y - 2 < A < 1 - y ,  when - 1 < y < i. (The condition y < 4 is given analytical 
consideration in an appendix.) The parameter y defines the scale and sense of 
the outer potential flow (positive and negative y referring to radial inflow and 
outflow respectively). For fixed y different values of A correspond to different 
flows in the core region each of which tends to the same potential flow at infinity. 

h’(0) = 1, (2.12) 

3. Results of numerical integration 
A large number of numerical solutions were obtained over the range of real 

values of y and A .  It was found that the solutions satisfying the outer boundary 
conditions could be divided into three main categories based on the value of y, 
see figure 1. 



6 P. G. Bellamy-Knights 

First, when y > $ only two values of A ,  A = y and A = - 2y, gave solutions. 
These were of course the analytical solutions already discussed. When other 
values of A were assigned the computed values of f  did not satisfy the outer 
boundary condition (1.11). For the particular value y = 0-8, figures 2 and 3 

FIGURE 1. Solutions obtained from the parameters y and A :  El, one-cell solutions; 
X, two-cell solutions ; UU , three-cell solutions. 

I I I I 

FIGURE 2. f’ is plotted as a function of 7 for two values of A when y = 0.8. 

show f‘ and f respectively when A = 0.8 and A = - 1.6. (In figures 2 to 7 the 
analytical solutions are shown by broken lines.) 

Second, when 0 < y < 4 solutions were obtained for all values of A within the 
range 2y - 2 < A < 1 -y .  The number of cells in any particular solution was 
obtained by inspecting the behaviour off. Since 

f = -ru/2v, 
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the radial velocity is zero when f = 0. Thus, iff cuts the 7 axis m times the solu- 
tion has m+ 1 cells. Similarly, the nature of the axial flow was obtained by 
inspecting the graph off ‘. Since 

f ’ = tw/x, 
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FIGURE 3. f is plotted as a function of 7 for two values of A when y = 0.8. 

No solutions 

I/. A = 1 - p0.8 -+ 
I I 1 

A =  

FIGURE 4. f’ is plotted as a function of 7 for various values of A when y = 0.2. 

the axial velocity changes direction when f ’  cuts the 7 axis. Thus for the second 
category it was found that one-cell solutions were obtained when 0 < A < 1 - y. 
These solutions were qualitatively similar to  the analytical one-cell solution given 
by A = y, which itself belongs to this subrange. When 2y - 2 < A < 0 two-cell 
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solutions were obtained which were qualitatively similar to  the analytical two- 
cell solution obtained when A = - 2y. For the particular value y = 0.2, figures 4 
and 5 show f’ and f respectively for typical values of A in the range 

- 1.6 < A < 0.8. 

In  the above two categories the radial velocity in the outer potential flow 
was inwards. The most interesting results, however, were obtained in the third 
and last category, where - 1 < y < 0, for which the radial velocity in the outer 
flow was outwards. As for flows in the second category, solutions were obtained 

3 

2 

f (4) 

1 

0 

I I I I I I 
FIGURE 6. f is plotted as a function of 4 for various values of A when y = 0.2. 

for all values of A in the range 2y - 2 < A < 1 - y. It is now convenient to divide 
this range into three subranges as follows. (i) When 0 < A < 1-y,  two-cell 
solutions were obtained. (ii) When A,  c A < 0, one-cell solutions were obtained; 
A ,  is that value of A for whichftouches the 7 axis. Over this subrange of A ,  f does 
not intersect the 7 axis and the radial velocity is everywhere outwards. For values 
of A near A,, however, f’ intersects the 7 axis twice giving solutions with an 
annular region of reversed axialvelocity. (See figure 13, curve (b).)  This interesting 
feature suggests how the three-cell solutions (described below) could develop 
from the one-cell solutions. This development will be described in 3 4. (iii) When 
2y - 2 < A < A,, three-cell solutions were obtained because f cuts the 7 axis at 
two points. 

For a typical value of y in the third category, namely y = - 0.6, the computed 
values off’ and f are given, in figures 6 and 7 respectively, for typical values of 
A in the subranges described above. 

To sum up, the solutions obtained when - 1 < y < $ can be distinguished by 
the sign of A / y .  If Aly is negative two-cell solutions are obtained and if Aly  is 
positive one-cell solutions are obtained except when y is negative and A < A,(y)  
in which case three-cell solutions are obtained, see figure 1. 

For each of the solutions for f in the three categories described above the 
corresponding computed value of h tended monotonically to a finite upper bound 
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N .  Thus, after normalization with respect to N ,  the outer boundary condition 
(1.20) was satisfied. Figure 8 shows the computed values of h, before and after 
normalization, for typical values of y and A .  

The reliability of the computer results was confirmed by comparing the com- 
puter results obtained when A = y and A = -2y with the corresponding 

FIGURE 6. f' is plotted as a function of 9 for various values of A when y = - 0.6. 

3 I I I I I I I I I 

---_ I /.----------- --- 

FIUURE 7. f is plotted as a function of 9 for various values of A when y = - 0.6. 

analytical solutions. Although figures 2-8 show results only as far as about 
7 = 20, some programmes were run as far as 7 = 2000. The total error (i.e. dis- 
cretization error and stability error) was negligible throughout this large range. 

When f and h have been computed the velocity components can be obtained 
from the equations 

w = -2vf/r, v = K,h/r, w = zf'/t. (3.1), (3.2), (3.3) 
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Also the stream function @ is given by 

9 = Zvzf, (3.4) 

where the surfaces 9 = constant are stream tubes and the streamlines are spirals 
lying on these stream tubes. A meridian plane cuts a stream tube in a section 
which will henceforth be termed a ‘streamline’. 

I I I I I 1 

FIGURE 8. h is plotted as a function of 71 when y = - 0.6 and A = - 2.5 
(a) before and ( b )  after normalization with respect t o  N .  

It will be convenient to introduce an arbitrary length scale, ro say, in order 
to express the variables non-dimensionally. Then non-dimensional quantities, 
denoted by superscript bars, are defined by 

(T, 4 = (1b-O) ( r ,  21, 

(% 3) = (rolW (u, w), 

( 3 4 ,  (3.6) 

i? = 4vt/r& (3.7) 

(3.% (3.9) 

V = rov/Kc, 

ri/ = @./2vro. 
- 

Then from (1.4), 
?/- = P / f .  

(3.10) 

(3.11) 

(3.12) 

4. Description and discussion of three-cell vortices 
Detailed description of the numerically calculated one- and two-cell solutions 

will not be given since such solutions are qualitatively similar to the one- and 
two-cell analytical solutions described in I. The present numerical work does, 
however, reveal a new family of solutions which are not typified by any known 
analytical solution. These are the three-cell solutions obtained when 0 > y > - 1 
and 2 y -  2 < A < A,(y)  (see figure 1). 
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A typical three-cell solution of this family, obtained when y = -0.6 and 
A = - 2.5, will now be considered in some detail. (For this value of y, A,  = - 2.37, 
see figure 1.) The computed values off I ,  f and h for these values of y and A are 
plotted in figures 6-8 respectively. 

The behaviour of the radial velocity is deduced from the appropriate curve 
( A  = - 2.5) in figure 7 which gives f (  = -TU) plotted as a function of 7. There are 
two non-zero values of 7 called T~ and v4 for which f, and therefore the radial 
velocity, is zero. Thus the flow consists of three cells separated by the time- 
dependent cylindrical surfaces 7 = v2 and 7 = r4. When 72 < 7 < r4 then f > 0 
and so there is radial inflow in the middle cell. When 7 < qZ and 7 > y4 thenf < 0 
and there is radial outflow in the inner and outer cells. 

I 
I 
I 
I 

I 
I 
I 
1 
I 

0 1 2 
FIGURE 9. The stream surfaces when y = - 0.6, A = - 2.5 and t = 0.5.  

Similarly, the behaviour of the axial velocity is deduced from the appropriate 
curve in figure 6, which gives f ’( = fW/2Z) plotted as a function of 7. There are 
two values of 7 - for which f I ,  and therefore the axial velocity, is zero - called y1 
and r3, where ql < r12 < r3 < q4. The axial velocity is upwards when ql < 7 < r3 
and downwards outside this range. For the particular case under consideration, 
7, = 0.4, T~ = 1.9, r3 = 3.4 and r4 = 5.2. 

These features of the three-cell vortex are illustrated in figure 9 in which 
certain streamlines are plotted at  a particular instant, f = 0.5. The radii corre- 
sponding to 7 = yl, y2, q3 and y4 are labelled in figure 9 by C,, C,, C, and C, 
respectively. As time increases the surfaces Ci (i = 1,2 ,3 ,4)  expand radially. 

The timewise development of the radial, U, and axial, W, velocity components 
is shown in figures 10 and 11 respectively. Each velocity component is plotted as 
a function of F at three different times, f = 0.5, 1 and 1.5. The corresponding 
asymptotic values of S and G, specified by the outer potential flow solution given 
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in (1.8) and (1 .  lo), are also plotted. The behaviour of U and W at any instant is 
as described above. Figures 10 and 11 show that the maximum radial and axial 
velocities in the inner cells decrease its time increases. 

FIGURE 10. The radial velocity distribution for the three-cell solution obtained when 
y = - 0.6 and A = - 2.5 (solid lines) and the corresponding asymptotic solution (broken 
lines): t = 0.5, 1 and 1-5, respectively, for curves (a) ,  ( b )  and ( c ) .  

FIGURE 11. The axial velocity distribution for the three-cell solution obtained when 
y = - 0.6 and A = - 2.5 (solid lines) and the corresponding asymptotic solution (broken 
lines): t = 0.5, 1 and 16,  respectively, for curves (a), (a) and (c). 

Now, for viscous vortex cores the vorticity tends to diffuse radially outwards. 
This diffusion process can be balanced only when there is sufficient convection 
of fresh circulation from outside the vortex core due to radial inflow, as in the 
case of the steady one- and two-cell vortices (Sullivan 1959). For the present 
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three-cell vortices, however, there is always radial outflow in the outer cell which 
results in the convection outwards of circulation which is lower than the circula- 
tion of the ambient potential flow. Thus the diffusion and convection processes 
result in the timewise expansion of the cells and reduction of the maximum radial 
and axial velocities in the two inner cells. 

In  figure 12 the circumferential velocity is plotted at .f = 0.5,l and 1.5. Vertical 
strokes indicate the radial stations at which the axial velocity is zero. The velocity 
profiles are similar to those obtained from the analytical solutions and wil l  not 
be discussed further. 

F 

FIGURE 12. The Circumferential velocity distribution for the three-cell solution obtained 
when y = - 0.6 and A = - 2.6, t = 0.5, 1 and 1.5, respectively, for curves (a), ( b )  and (c ) .  

It has been seen that the numerical method reveals a, family of three-cell 
solutions. Now, another interesting feature of the present work will be discussed. 
The numerical method provides a continuous range of solutions between any 
three-cell solution and the analytical one-cell solution. For example, when 
y = - 0.6 the analytical one-cell solution is given by A = - 0.6 and a typical 
three-cell solution by A = -2.5. Now there are solutions for all intermediate 
values of A and so the gradual development of the three-cell vortex from the 
one-cell vortex can be traced by considering how the solutions develop as A 
decreases from - 0.6 to - 2.5. The streamlines for a few intermediate values of A ,  
namely A = - 1.86, - 2-20 and - 2.37 ( = A,) are shownin figure 13 by curves (a),  
(b )  and (c), respectively. 

Initially, when A = - 0.6, the streamlines are concave upwards since every- 
where the axial velocity is downwards and radial velocity outwards. When 
A = - 1.86 the streamlines have developed a point of idexion at  which the axial 
velocity is zero, see figure 13, curve (a).  As A decreases further the point of 
inflexion develops to give a maximum and minimum. This results in an annular 
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region of axial upflow, see figure 13, curve (b) .  As A -+ - 2.37, the axial position of 
the maximum tends to infinity. In  the limiting case, A = - 2-37 (= A J ,  there 
is a cylinder on which both the axial and radial velocities are zero, see figure 13, 
curve (c). As A decreases further a new cell appears in the region of this cylinder 
to give a three-cell configuration as in figure 9. 

- 
FIGURE 13. The stream surfaces when y = - 0.6, t = 0.5 and + = - 0.5: A = - 1.86, - 2.2 

and - 2.37, respectively, for curves (a) ,  ( b )  and (c) .  

A possible physical explanation of the early stages of the transition may be 
that the radial outflow is insufficient to drain the increasing volume of fluid 
carried towards the plane z = 0 due to the increasing axial downflow near the 
axis of symmetry. Hence there is a tendency for fluid to be emitted axially as 
well as radially. 

Gutman (1957) showed that when thermal effects are taken into account the 
inner cell of a two-cell vortex corresponds to a closed cell of recirculating fluid 
around the axis bounded above by a free stagnation point on the axis. Similarly, 
the middle cell of a three-cell vortex may correspond to an axially bounded 
torroidal region of recirculating fluid over which fluid flows radially outwards 
from the inner to the outer cell. 

5. Conclusions 
The present numerical work extends the results of the analytical work of I in 

several respects. First, a new family of solutions is discovered namely the three- 
cell vortices, which are not represented by any known analytical solution. These 
solut'ions are obtained when there is a suitable radial outflow in the ambient 
potential flow and when the axial velocity on the axis lies within a certain range 
of negative values. 
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Second, the numerical solutions suggest how a three-cell (or two-cell) solution 
can gradually develop from a one-cell solution. The analytical solutions failed 
to do this because they represented particular solutions for two discrete values 
of A and provided no solutions for intermediate values of A .  

Third, the present work shows the sensitivity of the core flow to small changes 
in the outer flow. When many solutions are possible for a fixed value of y each 
solution is characterized by a value of A which also corresponds to a specific 
value of B in (1.11). For example, when A = y equation (1.24) shows that B = 0 
and when A = -2y (1.26) shows that B = - 3y/ ( l+  y). (For other values of A 
the corresponding values of B can be measured from graphs such as in figure 7.) 
To the first order however, the outer potential flow is specified solely by y and 
is independent of B whereas the core flow is characterized by A which repre- 
sents the axial velocity on the axis. 

For steady flows Donaldson & Sullivan (1960, 1963) showed, using numerical 
techniques similar to those used in the present work, that no asymptotic solu- 
tions exist other than the one and two-cell analytical solutions of Burgers (1940, 
1948) and Sullivan (1959), respectively. Thus steady flow solutions are similar 
to the category of unsteady solutions, obtained when y > 4, which were discussed 
in 33. For flows of this type there are no three-cell solutions and there can 
apparently be no gradual transition from a one-cell to a two-cell solution. 

The author is indebted to Professor N. H. Johannesen in whose department 
this work was done and to Dr I. M. Hall under whose guidance this paper was 
produced. During the course of this work the author held a Research Studentship 
from the Science Research Council. 

Appendix. The perturbed analytical one-cell solution 
The numerical results showed that when - 1 < y < 6 solutions other than the 

analytical one- and two-cell solutions were possible. It was noted in 0 2 that the 
analytical one-cell solution satisfies the outer boundary conditions only if y > - 1. 
In  this appendix it is assumed that if solutions in addition to the analytical 
solutions exist (for a fixed value of y )  they will include solutions corresponding 
to a slightly perturbed analytical one-cell solution. Then, using the inequality 
y > - 1, it is shown that this perturbed solution cannot satisfy the outer boundary 
conditions if y > 8. 

Thus a solution of (1.14) of the form 

f(r) = 77 f W r )  (A 1) 

is considered, where 8 is small and G is a function of 9.  Boundary condition (1.7) 

gives G(0)  = 0. 

Substituting (A 1) into (1.14) and neglecting powers of 6 greater than one gives 

[YG" + rG']' + yrG" - 2yG' = 0. (A 2) 
On putting z = - ( l + y ) y  

and &) = G'(r) ,  
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(A 2) reduces to the confluent hypergeometric equation 

x-+(l-x)-- d24 ;; ( y $ = O .  - 
ax2 

The solution of this equation which satisfies the boundary conditions on the 
axis is 

1-2y 4 = C1Fl (- ; 1 ; x) 1 

where Cis a constant and is the confluent hypergeometric function. Now when 
7 is large, x is large and negative since 1 -I- y > 0, but for x real, large and negative 
(Morse & Feshbach 1953), 

where a and d are constants and I? is the gamma function. Hence for large values 
of 7, corresponding to large negative values of 5, 

Now (-x)(2Y-1)l(Y+l) tends to zero or infinity according as y < Q or y > 4. Thus 
if y > 4 the perturbed analytical one-cell solution cannot satisfy the outer 
boundary conditions. 
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